The Pharmacology and Pharmacogeneticsof Imatinib in Chronic Myeloid LeukemiaTherapy
Keywords:
Imatinib, chronic myeloid leukemia, pharmacology, pharmacogenetics, ยา imatinib, โรคมะเร็งเม็ดเลือดขาวเรื้อรังชนิดมัยอีลอยด์เภสัชวิทยา, เภสัชพันธุศาสตร์Abstract
Imatinib, a tyrosine kinase inhibitor, is considered as the first line drug for treatment of chronic myeloid leukemia(CML). Imatinib is highly effective therapy for Philadelphia chromosome positive CML. However,a proportion of patients do not respond well to imatinib therapy. Several studies have attempted to identify genetic factors associated with imatinib responses in CML patients involving drug transporter and imatinib metabolizing enzyme genes such as ATP-binding cassette transporter subfamily B member 1 (ABCB1), ATP-binding cassette transporter subfamily G member 2 (ABCG2),organic cation transporters1(OCT1), and cytochrome P450 3A5 (CYP3A5). The effects of these genetic polymorphisms, however, are still controversial. This review focuses on gathering the knowledge about the pharmacology of imatinib including mechasnism of action, pharmacokinetics, drug interactions, adverse drug reactions, and mechanisms of imatinib resistance. Additionally, the pharmacogenetics studies of imatinib are also reviewed. This informationis useful for medical/professional staffs in improving the efficacy and safety of imatinib therapy.
เภสัชวิทยาและเภสัชพันธุศาสตร์ของยา imatinib ในการรักษาโรคมะเร็งเม็ดเลือดขาวเรื้อรังชนิดมัยอีลอยด์
นิตย์สุภา วัฒนชัย1,2
1ภาควิชาเภสัชวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น ขอนแก่น
2กลุ่มวิจัยไกลโคไซเอนซ์และไกลโคเทคโนโลยีคณะแพทยศาสตร์ มหาวิทยาลัยขอนแก่น ขอนแก่น
บทคัดย่อ
ยา imatinib เป็นยายับยั้งไทโรซีนไคเนส (tyrosine kinase inhibitor) โดยใช้เป็นยาหลักในการรักษาโรคมะเร็งเม็ดเลือดขาวเรื้อรังชนิดมัยอีลอยด์ (chronic myeloid leukemia; CML) ถึงแม้ยา imatinib มีประสิทธิภาพดีในการรักษา CML ที่มีการแสดงออกของโครโมโซมฟิลาเดลเฟีย อย่างไรก็ตามพบว่ามีผู้ป่วยไม่ตอบสนองต่อการรักษามีหลายการศึกษาที่แสดงถึงปัจจัยทางพันธุกรรมที่มีผลต่อการตอบสนองต่อยา imatinib ในผู้ป่วย CML ซึ่งเกี่ยวข้องกับยีนที่เป็นตัวขนส่งยาและเอนไซม์ที่เปลี่ยนแปลงยา imatinib ได้แก่ ภาวะพหุสัณฐานทางพันธุกรรมของยีน ATP-binding cassette transporter subfamily B member 1 (ABCB1), ยีน ATP-binding cassette transporter subfamily G member 2 (ABCG2), ยีน organic cation transporters 1 (OCT1) และ ยีน cytochrome P450 3A5 (CYP3A5) อย่างไรก็ตามผลของภาวะพหุสัณฐานทางพันธุกรรมของยีนดังกล่าวข้างต้นยังคงมีข้อขัดแย้ง ซึ่งในบทความนี้มุ่งเน้นประมวลองค์ความรู้ที่เกี่ยวข้องกับเภสัชวิทยาของยา imatinib ซึ่งได้แก่ กลไกการออกฤทธิ์ เภสัชจลนศาสตร์อันตรกิริยาระหว่างยา imatinib และยาอื่นที่ใช้ร่วม อาการไม่พึงประสงค์ และกลไกการดื้อยา imatinib นอกจากนี้ยังได้กล่าวถึงการศึกษาทางเภสัชพันธุศาสตร์ของยา imatinib ซึ่งข้อมูลดังกล่าวจะเป็นประโยชน์สำหรับบุคคลากรทางการแพทย์เพื่อให้การรักษาด้วยยา imatinib เกิดประสิทธิผลและความปลอดภัยมากยิ่งขึ้น
References
Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383-91.
Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290-3.
Maru Y. Molecular biology of chronic myeloid leukemia. Int J Hematol 2001; 73:308-22.
Din OS, Woll PJ. Treatment of gastrointestinal stromal tumor: focus on imatinib mesylate. Ther Clin Risk Manag 2008; 4: 149-62.
Dulucq S, Krajinovic M. The pharmacogenetics of imatinib. Genome Medicine 2010; 2: 1-8.
Marcucci G, Perrotti D, Caligiuri MA. Understanding the molecular basis of imatinib mesylate therapy in chronic myelogenous leukemia and the related mechanisms of resistance. Commentary re: A. N. Mohamed et al., The effect of imatinib mesylate on patients with Philadelphia chromosome-positive chronic myeloid leukemia with secondary chromosomal aberrations. Clin Cancer Res 9: 1333-1337, 2003. Clin Cancer Res 2003; 9: 1248-52.
Druker BJ. Translation of the Philadelphia chromosome into therapy for CML. Blood 2008; 112:4808-17.
Gschwind HP, Pfaar U, Waldmeier F, Zollinger M, Sayer C, Zbinden P, et al. Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab Dispos 2005; 33: 1503-12.
Kretz O, Weiss HM, Schumacher MM, Gross G. In vitro blood distribution and plasma protein binding of the tyrosine kinase inhibitor imatinib and its active metabolite, CGP74588, in rat, mouse, dog, monkey, healthy humans and patients with acute lymphatic leukaemia. Br J Clin Pharmacol 2004; 58: 212-6.
Peng B, Lloyd P, Schran H. Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 2005; 44: 879-94.
Chen S, Sutiman N, Chowbay B. Pharmacogenetics of drug transporters in modulating imatinib disposition and treatment outcomes in chronic myeloid leukemia & gastrointestinal stromal tumor patients. Pharmacogenomics 2016; 17: 1941-55.
Haouala A, Widmer N, Duchosal MA, Montemurro M, Buclin T, Decosterd LA. Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood 2011; 117: e75-87.
Bolton AE, Peng B, Hubert M, Krebs-Brown A, Capdeville R, Keller U, et al. Effect of rifampicin on the pharmacokinetics of imatinib mesylate (Gleevec, STI571) in healthy subjects. Cancer Chemother Pharmacol 2004; 53: 102-6.
Francis J, Palaniappan M, Dubashi B, Pradhan SC, Chandrasekaran A. Adverse drug reactions of imatinib in patients with chronic myeloid leukemia: A single-center surveillance study. J Pharmacol Pharmacother 2015; 6: 30-3.
แนวทางการรักษาผู้ป่วยมะเร็งเม็ดเลือดขาวเรื้อรังชนิดมัยอีลอยด์ (Chronic Myeloid Leukemia)สำหรับประเทศไทย [Internet]. 2554. Available from: www.tsh.or.th/file_upload/files/Chronic%20Myeloid%20Leukemia.doc.
Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol 2009; 27: 6041-51.
O'Hare T, Eide CA, Deininger MW. Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 2007; 110: 2242-9.
Lee F, Fandi A, Voi M. Overcoming kinase resistance in chronic myeloid leukemia. Int J Biochem Cell Biol 2008; 40: 334-43.
Hamada A, Miyano H, Watanabe H, Saito H. Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther 2003; 307: 824-8.
Wang L, Giannoudis A, Lane S, Williamson P, Pirmohamed M, Clark RE. Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 2008; 83: 258-64.
Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature. Clin Pharmacokinet 2015; 54: 709-35.
Vivona D, Lima LT, Rodrigues AC, Bueno CT, Alcantara GK, Barros LS, et al. ABCB1 haplotypes are associated with P-gp activity and affect a major molecular response in chronic myeloid leukemia patients treated with a standard dose of imatinib. Oncol Lett 2014; 7: 1313-9.
Dulucq S, Bouchet S, Turcq B, Lippert E, Etienne G, Reiffers J, et al. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2008; 112: 2024-7.
Takahashi N, Miura M, Scott SA, Kagaya H, Kameoka Y, Tagawa H, et al. Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet 2010; 55: 731-7.
Seong SJ, Lim M, Sohn SK, Moon JH, Oh SJ, Kim BS, et al. Influence of enzyme and transporter polymorphisms on trough imatinib concentration and clinical response in chronic myeloid leukemia patients. Ann Oncol 2013; 24: 756-60.
Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K, et al. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 2009; 15: 4750-8.
Nuntamool N, Ngamsamut N, Vanwong N, Puangpetch A, Chamnanphon M, Hongkaew Y, et al. Pharmacogenomics and Efficacy of Risperidone Long-Term Treatment in Thai Autistic Children and Adolescents. Basic Clin Pharmacol Toxicol 2017; 121: 316-24.
Breedveld P, Pluim D, Cipriani G, Wielinga P, van Tellingen O, Schinkel AH, et al. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 2005; 65: 2577-82.
Ni Z, Bikadi Z, Rosenberg MF, Mao Q. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 2010; 11: 603-17.
Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC. Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 2006; 108: 1370-3.
Kim YK, Lee SS, Jeong SH, Ahn JS, Yang DH, Lee JJ, et al. OCT-1, ABCB1, and ABCG2 Expression in Imatinib-Resistant Chronic Myeloid Leukemia Treated with Dasatinib or Nilotinib. Chonnam Med J 2014; 50: 102-11.
Au A, Aziz Baba A, Goh AS, Wahid Fadilah SA, Teh A, Rosline H, et al. Association of genotypes and haplotypes of multi-drug transporter genes ABCB1 and ABCG2 with clinical response to imatinib mesylate in chronic myeloid leukemia patients. Biomed Pharmacother 2014; 68: 343-9.
Cleophas MC, Joosten LA, Stamp LK, Dalbeth N, Woodward OM, Merriman TR. ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches. Pharmgenomics Pers Med 2017; 10: 129-42.
Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R, et al. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 2009; 50: 1227-40.
Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 2007; 24: 1227-51.
Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A, et al. Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res 2006; 66: 8847-57.
Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 2002; 302: 510-5.
White DL, Dang P, Engler J, Frede A, Zrim S, Osborn M, et al. Functional activity of the OCT-1 protein is predictive of long-term outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. J Clin Oncol 2010; 28: 2761-7.
Giannoudis A, Wang L, Jorgensen AL, Xinarianos G, Davies A, Pushpakom S, et al. The hOCT1 SNPs M420del and M408V alter imatinib uptake and M420del modifies clinical outcome in imatinib-treated chronic myeloid leukemia. Blood 2013; 121: 628-37.
Vaidya S, Ghosh K, Shanmukhaiah C, Vundinti BR. Genetic variations of hOCT1 gene and CYP3A4/A5 genes and their association with imatinib response in Chronic Myeloid Leukemia. Eur J Pharmacol 2015; 765: 124-30.
Nies AT, Schaeffeler E, van der Kuip H, Cascorbi I, Bruhn O, Kneba M, et al. Cellular uptake of imatinib into leukemic cells is independent of human organic cation transporter 1 (OCT1). Clin Cancer Res 2014; 20: 985-94.
White DL, Saunders VA, Dang P, Engler J, Hughes TP. OCT-1 activity measurement provides a superior imatinib response predictor than screening for single-nucleotide polymorphisms of OCT-1. Leukemia 2010; 24:1962-5.
Ben Hassine I, Gharbi H, Soltani I, Teber M, Farrah A, Ben Hadj Othman H, et al. hOCT1 gene expression predict for optimal response to Imatinib in Tunisian patients with chronic myeloid leukemia. Cancer Chemother Pharmacol 2017; 79: 737-45.
Harivenkatesh N, Kumar L, Bakhshi S, Sharma A, Kabra M, Velpandian T, et al. Influence of MDR1 and CYP3A5 genetic polymorphisms on trough levels and therapeutic response of imatinib in newly diagnosed patients with chronic myeloid leukemia. Pharmacol Res 2017; 120: 138-45.
Adeagbo BA, Bolaji OO, Olugbade TA, Durosinmi MA, Bolarinwa RA, Masimirembwa C. Influence of CYP3A5*3 and ABCB1 C3435T on clinical outcomes and trough plasma concentrations of imatinib in Nigerians with chronic myeloid leukaemia. J Clin Pharm Ther 2016; 41: 546-51.
Maddin N, Husin A, Gan SH, Aziz BA, Ankathil R. Impact of CYP3A4*18 and CYP3A5*3 Polymorphisms on Imatinib Mesylate Response Among Chronic Myeloid Leukemia Patients in Malaysia. Oncol Ther 2016; 4: 303-14.
Lee JS, Cheong HS, Kim LH, Kim JO, Seo DW, Kim YH, et al. Screening of Genetic Polymorphisms of CYP3A4 and CYP3A5 Genes. Korean J Physiol Pharmacol 2013; 17: 479-84.
Amirimani B, Ning B, Deitz AC, Weber BL, Kadlubar FF, Rebbeck TR. Increased transcriptional activity of the CYP3A4*1B promoter variant. Environ Mol Mutagen 2003; 42: 299-305.