Four Main Components of Phikud Navakot Promote Cholesterol Metabolism Through LDLR, HMGCR, SR-BI and ApoA-I Genes

Authors

  • Napatara Tirawanchai
  • Sudarat Supapornhemin
  • Anchaleekorn Somkasetrin
  • Jiraporn Jantaravinid
  • Kanchana Kengkoom
  • Sumate Ampawong

Keywords:

Hypercholesterolemia, Phikud Navakot, LDLR, HMGCR, SR-BI, ApoA-1,

Abstract

สมุนไพรที่เป็นส่วนประกอบของพิกัดนวโกฐ 4 ชนิดควบคุมเมแทบอลิซึมของโคเลสเตอรอลโดยผ่านการแสดงออกของยีน LDLR, HMGCR, SR-BI and ApoA-1

นภัทรธรา ธีระวัลย์ชัย1 , สุดารัตน์ สุภาพรเหมินทร์1 , อัญชลีกร โสมเกษตริน1 , จิราพร จันทรวินิจ1 , กาญจนา เข่งคุ้ม2 , สุเมธ อำภาวงษ์ 3,*

1 ภาควิชาชีวเคมี คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล 2 ถนนพรานนก เขตบางกอกน้อย กทม. 10700 ประเทศไทย

2 ศูนย์สัตว์ทดลองแห่งชาติ มหาวิทยาลัยมหิดล 999 ศาลายา พุทธมณฑล นครปฐม 73170 ประเทศไทย

3 ภาควิชาพยาธิวิทยาเขตร้อน คณะเวชศาสตร์เขตร้อน มหาวิทยาลัยมหิดล 420/6 ถนนราชเวิถี ราชเทวี พญาไท กทม. 10400 ประเทศไทย

หลักการและวัตถุประสงค์: ยาหอมนวโกฐ (Ya-Hom Navakot; NY) ประกอบด้วยสมุนไพร 54 ชนิด เป็นตำรับยาไทยที่ใช้กันมานานนับศตวรรษ เพื่อใช้แก้ลม และบรรเทาอาการวิงเวียน สมุนไพรที่เป็นส่วนประกอบหลักของยาหอม

นวโกฐ หรือที่เรียกว่าพิกัดนวโกฐ (Phikud Navakot;PN) มีอยู่ 9 ชนิด ซึ่งมีสรรพคุณช่วยควบคุมสภาวะสมดุลของโคเลสเตอรอลผ่านการแสดงออกของยีนLDLRและHMGCR ได้ดีกว่ายาหอมนวโกฐ โครงการศึกษานี้ จึงต้องการศึกษาว่าฤทธิ์ลดโคเลสเตอรอลของพิกัดนวโกฐ เกิดจากสมุนไพรเดี่ยวที่เป็นส่วนประกอบหลักของยาหอมนวโกฐ ชนิดใด เพื่อเป็นแนวทางในการนำเอาสมุนไพรในพิกัดนวโกฐไปใช้เป็นทางเลือกในการลดโคเลสเตอรอลต่อไป

วิธีการศึกษา: ฤทธิ์ลดไขมันของสารสกัดแอลกอฮอล์จากสมุนไพรเดี่ยวที่เป็นส่วนประกอบของพิกัดนวโกฐทั้ง 9 ชนิด จะทำการศึกษาจากการแสดงออกของยีน LDLR, HMGCR, SR-BI และ ApoA-I ในเซลล์ HepG2 โดยใช้วิธี quantitative real-time PCR (qRT-PCR)

ผลการศึกษา: สมุนไพรเดี่ยวที่เป็นส่วนประกอบของพิกัดนวโกฐทั้ง 9 ชนิด มีฤทธิ์ยับยั้งการแสดงออกของยีนHMGCRเมื่อเปรียบเทียบกับยาซิมวาสแตติน นอกจากนี้ สารสกัดจากโกฐสอ (Angelica dahurica; AD), โกฐเขมา (Atractylodes lancea; AL) โกฐชฎามังสี (Nardostachys  jatamansi; NJ) มีฤทธิ์กระตุ้นการแสดงออกของยีน LDLR และ SR-BI ส่วนสารสกัดจากโกฐจุฬาลัมพา (Artemisia pallens; AP) มีฤทธิ์กระตุ้นการแสดงออกของยีน ApoA-I

สรุป: ฤทธิ์ลดโคเลสเตอรอลของพิกัดนวโกฐ เป็นผลมาจากสมุนไพร 4 ชนิดที่เป็นส่วนประกอบของพิกัดนวโกฐ ซึ่งเกี่ยวข้องกับการลดโคเลสเตอรอล การรักษาภาวะสมดุลของโคเลสเตอรอลหรือการเพิ่มการสลายโคเลสเตอรอลโดยผ่านการควบคุมการแสดงออกของยีนHMGCR, LDLRและ ApoA-I ตามลำดับ จึงอาจกล่าวได้ว่า สมุนไพรในพิกัดนวโกฐ น่าจะเป็นอีกหนึ่งทางเลือกที่ใช้ในการลดโคเลสเตอรอลต่อไปในอนาคต

Background and Objectives: Ya-Hom Navakot (NY), a combination of fifty-four Thai medicinal herbs, has been used as a traditional medicine for decades especially when dizziness and fainting. Phikud Navakot (PN), nine selected herbal remedies from those components in NY, regulates HMGCR and LDLR genes leading to enhance cholesterol homeostasis. The cholesterol-lowering effect of PN is found to be more potent than that observed in NY. Hence, the objective of this study was to assess the cholesterol-lowering effect of all nine individual herbal extracts of PN which might be used as an alternative treatment for hypercholesterolemia.

 

Methods: Lipid lowering effect of the ethanolic extract of all nine individual herbal extracts of PN was examined focusing on expression of the genes encoding LDLR, HMGCR, SRBI and ApoA-1 in HepG2 cells by quantitative real-time PCR (qRT-PCR).

Results: The ethanolic extracts from all nine individual herbs of PN were found to downregulate expression of the HMGCR gene comparing with the effect of simvastatin. The extracts of Kot Soa (Angelica dahurica; AD), Kot Khamao (Atractylodes lancea; AL), and Kot Jatamansri (Nardostachys jatamansi; NJ) could additionally upregulate the LDLR and SRB1 genes. Kot Chulalumpa (Artemisia pallens; AP) increased the expression of the ApoA-1 gene.

Conclusions: Cholesterol-lowering effect of PN was attributable to the four ingredients of PN which possessed high capability to decrease cholesterol production, maintain cholesterol balance, and promote cholesterol clearance via regulation of the HMGCR, LDLR, and ApoA-1 genes, respectively. Hence, PN might be an alternative tool to reduce cholesterol level in the future. 

References

Sawasdimongkol S. Annual report 2015. In diseases BoN ed. Thailand: Ministry of Health, 2015.

Zhao J, Kelly M, Bain C, Seubsman SA, Sleigh A, Thai Cohort Study T. Risk factors for cardiovascular disease mortality among 86866 members of the thai cohort study, 2005-2010. Glob J Health Sci 2015; 7: 107-14.

Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990; 343: 425-30.

Notarnicola M, Messa C, Refolo MG, Tutino V, Miccolis A, Caruso MG. Synergic effect of eicosapentaenoic acid and lovastatin on gene expression of hmgcoa reductase and ldl receptor in cultured hepg2 cells. Lipids Health Dis 2010; 9: 135.

Go GW, Mani A. Low-density lipoprotein receptor (ldlr) family orchestrates cholesterol homeostasis. Yale J Biol Med 2012; 85: 19-28.

Pichandi S, Pasupathi P, Rao YY, Farook J, Ambika A, Ponnusha BS et al. The role of statin drugs in combating cardiovascular diseases. International Journal of Current Research in Science & Technology 2011; 1: 47-56.

Ramkumar S, Raghunath A, Raghunath S. Statin therapy: Review of safety and potential side effects. Acta Cardiol Sin 2016; 32: 631-9.

Nalinratana N, Kaewprem W, Tongumpai S, Luechapudiporn R, Sotanaphun U, Meksuriyen D. Synergistic antioxidant action of phikud navakot ameliorates hydrogen peroxide-induced stress in human endothelial cells. Integr Med Res 2014; 3: 74-82.

Nusuetrong P, Gerdprasert O, Wetchasit P, Nakchat O, Sotanaphun U. Effect of short-term oral administration of phikud navakot in rats. J Med Assoc Thai 2015;98 (Suppl 10): S52-60.

Nusuetrong P, Sotanaphun U, Tep-Areenan P. Effects of phikud navakot extract on vascular reactivity in the isolated rat aorta. J Med Assoc Thai 2012; 95 (Suppl 12): S1-7.

Kengkoom K, Chaimongkolnukul K, Cherdyu S, Inpunkaew R, Ampawong S. Acute and sub-chronic oral toxicity study of the extracts from herbs in phikud navakot. African Journal of Biotechnology 2012; 11: 10903-11.

Kengkoom K, Ampawong S. In vitro protective effect of phikud navakot extraction on erythrocyte. Evid Based Complement Alternat Med 2016; 2016: 1961327.

Tirawanchai N, Supapornhemin S, Somkasetrin A, Suktitipat B, Ampawong S. Regulatory effect of phikud navakot extract on hmg-coa reductase and ldl-r: Potential and alternate agents for lowering blood cholesterol. BMC Complement Altern Med 2018; 18: 258.

Sangkitikomol W, Rocejanasaroj A, Tencomnao T. Effect of moringa oleifera on advanced glycation end-product formation and lipid metabolism gene expression in hepg2 cells. Genet Mol Res 2014; 13: 723-35.

Chomczynski P, Sacchi N. Single-step method of rna isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156-9.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative pcr and the 2(t)(-delta delta c) method. Methods 2001; 25: 402-8.

Lee K, Shin MS, Ham I, Choi HY. Investigation of the mechanisms of angelica dahurica root extract-induced vasorelaxation in isolated rat aortic rings. BMC Complement Altern Med 2015; 15: 395.

Lu X, Yuan ZY, Yan XJ, Lei F, Jiang JF, Yu X, et al. Effects of angelica dahurica on obesity and fatty liver in mice. Chin J Nat Med 2016; 14: 641-52.

Zhang XN, Ma ZJ, Wang Y, Sun B, Guo X, Pan CQ, et al. Angelica dahurica ethanolic extract improves impaired wound healing by activating angiogenesis in diabetes. PLoS One 2017; 12: e0177862.

Oh H, Lee HS, Kim T, Chai KY, Chung HT, Kwon TO, et al. Furocoumarins from angelica dahurica with hepatoprotective activity on tacrine-induced cytotoxicity in hep g2 cells. Planta Med 2002; 68: 463-4.

Liu DP, Luo Q, Wang GH, Xu Y, Zhang XK, Chen QC, et al. Furocoumarin derivatives from radix angelicae dahuricae and their effects on rxralpha transcriptional regulation. Molecules 2011; 16: 6339-48.

Cao YJ, He X, Wang N, He LC. Effects of imperatorin, the active component from radix angelicae (baizhi), on the blood pressure and oxidative stress in 2k,1c hypertensive rats. Phytomedicine 2013; 20: 1048-54.

Zhou N, Wang T, Song J, He H, He J, He L. Antihypertensive and vascular remodelling effects of the imperatorin derivative ow1 in renovascular hypertension rats. Clin Exp Pharmacol Physiol 2014; 41: 571-8.

Koonrungsesomboon N, Na-Bangchang K, Karbwang J. Therapeutic potential and pharmacological activities of atractylodes lancea (thunb.) dc. Asian Pac J Trop Med 2014; 7: 421-8.

Nasu Y, Iwashita M, Saito M, Fushiya S, Nakahata N. Inhibitory effects of atractylodis lanceae rhizoma and poria on collagen- or thromboxane a2-induced aggregation in rabbit platelets. Biol Pharm Bull 2009; 32: 856-60.

Jiao P, Tseng-Crank J, Corneliusen B, Yimam M, Hodges M, Hong M, et al. Lipase inhibition and antiobesity effect of atractylodes lancea. Planta Med 2014; 80: 577-82.

Ruikar AD, Khatiwora E, Ghayal NA, Misar AV, Mujumdar AM, Puranik VG, et al. Studies on aerial parts of artemisia pallens wall for phenol, flavonoid and evaluation of antioxidant activity. J Pharm Bioallied Sci 2011; 3: 302-5.

Kumar PA, Upadhyaya K. Analgesic and anti-inflammatory properties of artemisia pallens wall ex.Dc. Pharmacologyonline 2010; 1: 567-73.

Vindya NS, Manjunath C, Tamizhmani T. Anticarcinogenic effect of artemisia pallens in 20-methylcholanthrene induced fibrosarcoma in swiss albino mice. Unique Journal of Pharmaceutical and Biological Sciences 2012; 4: 1-4.

Vengala N. Antihypertensive activity of methanolic extract of artemisia pallens wall in renal hypertensive diabetic rats. Res Rev BioSci 2017; 12: 1-11.

Chaudhary S, Chandrashekar KS, Pai KS, Setty MM, Devkar RA, Reddy ND, et al. Evaluation of antioxidant and anticancer activity of extract and fractions of nardostachys jatamansi dc in breast carcinoma. BMC Complement Altern Med 2015; 15: 50.

Sahu R, Dhongade HJ, Pandey A, Sahu P, Sahu V, Patel D, et al. Medicinal properties of nardostachys jatamansi (a review). Oriental Journal of Chemistry 2016; 32: 859-66.

Shin JY, Bae GS, Choi SB, Jo IJ, Kim DG, Lee DS, et al. Anti-inflammatory effect of desoxo-narchinol-a isolated from nardostachys jatamansi against lipopolysaccharide. Int Immunopharmacol 2015; 29: 730-8.

You HN, Park MH, Hwang SY, Han JS. Nardostachys jatamansi dc extract alleviates insulin resistance and regulates glucose metabolism in c57bl/ksj-db/db mice through the amp-activated protein kinase signaling pathway. J Med Food 2018; 21: 324-31.

Subashini R, Ragavendran B, Gnanapragasam A, Yogeeta SK, Devaki T. Biochemical study on the protective potential of nardostachys jatamansi extract on lipid profile and lipid metabolizing enzymes in doxorubicin intoxicated rats. Pharmazie 2007; 62: 382-7.

Downloads

Published

2019-09-23

Issue

Section

Original Articles