Risk Situation of Bromate Contained in Bottled Drinking Water and Natural Mineral Water Distributed in Thailand

Authors

  • Kannika Jittiyosara Bureau of Quality and Safety of Food, Department of Medical Sciences, Nonthaburi Province
  • Sakorn Singsalasaeng Bureau of Quality and Safety of Food, Department of Medical Sciences, Nonthaburi Province
  • Prapapan Prohmhirangul Region-al Medical Sciences Center 4 Saraburi, Saraburi Province
  • Nirundorn Raekasin Regional Medical Sciences Center 11 Surat Thani, Surat Thani Province
  • Sujit Sakhajorn Regional Medical Sciences Center 11/1 Phuket, Phuket Province
  • Pakphon Chaphonpak Regional Medical Sciences Center 1/1 Chiang Rai, Chiang Rai Province
  • Suwimon Iamboo egional Medical Sciences Center 2 Phitsanulok, Phitsanulok Province, Thailand

Keywords:

bromate, ozone, risk, bottled drinking water, natural mineral water

Abstract

Bromate is mutagenic possibly carcinogenic to humans. It can be found in drinking water as a by-product from water disinfected by ozone. No regulatory limit has been established in Thailand. This study aimed to evaluate risk situation from intake of bromate in bottled drinking water and natural mineral water distributed in Thailand in 2014 and a follow-up assessment in 2019. For the year 2014, the total of 566 samples from 60 provinces in Thailand with trademark was consisted of 511 samples of ozone treated bottled drinking water treatment system, 55 samples of natural mineral water, 24 samples were locally produced and 31 samples were imported. The 2019 study, there were 67 samples collected from 12 provinces including 4 imported samples. The analysis was performed using ion chromatographic technique with LOD and LOQ of 1 and 3 µg/L respectively, recovery of 99-112% and relative standard deviation (RSD) of 2.4-8.4%. The results showed that 10.0% of bottled drinking water collected in 2014 contained bromate in the range of <3-177 µg/L; and 18.2% of mineral water contained bromate in the range of <3-134 µg/L. Similar investigation conducted in 2016 revealed that bromate was still found in 9.8% of the drinking water samples with the range of 5.7-41.0 µg/L, and 60% in natural mineral water with the range of <3-68.5 µg/L. The health risk assessment revealed the hazard quotient (HQ) of less than 1. However, the excess cancer risks (ECR) in both bottled drinking water and mineral water was over 2x10-5, the acceptable risk level set by the World Health Organization. Therefore, the national authority should establish a regulatory limit for bromate in drinking water in Thailand in order to protect the consumers.

Downloads

Download data is not yet available.

References

Haag WR, Hoigne J. Ozonation of bromide-containing waters: kinetics of formation of hypobromous acid and bromate. Environmental Science & Technology 1983; 17(5):261-7.

International Agency for Research on Cancer. Some naturally occurring and synthetic food components, furocoumarins and ultraviolet radiation. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans volume 40. Lyon: International Agency for Re-search on Cancer; 1986.

International Agency for Research on Cancer. Some chemicals that cause tumours of the kidney or urinary bladder in rodents and some other substances. Lyon: International Agency for Research on Cancer; 1999.

กระทรวงสาธารณสุข. ประกาศกระทรวงสําธํารณสุขฉบับที่199 (พ.ศ. 2543) เรื่องน้ำแร่ธรรมชําติ. รําชกิจจํานุเบกษา เล่มที่ 118, ตอนพิเศษ 6 ง (ลงวันที่ 24 มกรําคม 2544).

สำนักงํานคณะกรรมการอาหารและยา. แนวทํางการอนุญาตสถานที่ผลิตน้ำแร่ธรรมชาติ: กรณีใช้น้ำใต้ดินเป็นแหล่งน้ำดิบ [อินเทอร์เน็ต]. [สืบค้นเมื่อ 13 ก.ค. 2562]. แหล่งข้อมูล: https://sites. google.com/site/ssithrrxdphung/naewthang-kar-xnuyat-sthan-thi-phlit-narae-thrrm-chati.pdf

US Environmental Protection Agency. Toxicological review of bromate [Internet]. 2001 [cited 2019 Jul 13]. Available from: https://cfpub.epa.gov/ncea/iris/iris_documents /documents/toxreviews/1002tr.pdf

World Health Organization. Bromate in drinking-water. Background document for development of WHO guide-lines for drinking-water quality [Internet]. 2005 [cited 2019 Aug 30]. Available from: https://www.who.int/water_sanitation_health/dwq/che micals/bro-mate260505.pdf

Hoigné J, Bader H. Kinetics of reactions of chlorine dioxide (OClO) in water — I. Rate constants for inor-ganic and organic compounds. Water Research 1994; 28(1):45-55.

การประปํานครหลวง. สํารไตรฮําโลมีเธน (THMs) [อินเทอร์เน็ต]. 2562 [สืบค้นเมื่อ 30 ส.ค. 2562]. แหล่งข้อมูล: https://www.mwa.co.th/ewt_news .php?nid=3587

บรรพต กลิ่นประทุม. กํารสำรวจไตรฮําโลมีเทนในพื้นที่น้ำประปําดื่มได้ เขตกรุงเทพมหํานครและปริมณฑล. กํารประชุมวิชํากํารกรมวิทยําศําสตร์กํารแพทย์ ประจำปี งบประมําณ พ.ศ. 2562; 18-20 มีนําคม 2562; นนทบุรี, ประเทศไทย; นนทบุรี: กรมวิทยําศําสตร์กํารแพทย์; 2562.

Chawla RC, Varma MM, Balram A, Murali M, Natara-jan P. Trihalomethane removal and formation mechanism in water. Washington DC: The DC Water Resources Research Center, University of the District of Columbia; 2005.

Richardson SD. Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends in Analytical Chemistry 2003;22(10):666-84.

Rook JJ. Formation of haroforms during chlorination of natural waters. Water Treatment and Examination 1974; 23:234-43.

National Health and Medical Research Council. Austra-lian drinking water guidelines 6 national water quality management strategy. Canberra: National Health and Medical Research Council, National Resource Manage-ment Ministerial Council; 2011.

Health Canada. Guidelines for Canadian drinking water quality: guideline technical document — bromate. Ottawa, Ontario: Water and Air Quality Bureau, Healthy Envi-ronments and Consumer Safety Branch, Health Canada; 2016.

Campbell KC. Bromate-induced ototoxicity. Toxicology 2006;221(2-3):205-11.

Ahmad MK, Naqshbandi A, Fareed M, Mahmood R. Oral administration of a nephrotoxic dose of potassium bromate, a food additive, alters renal redox and metabolic status and inhibits brush border membrane enzymes in rats. Food Chemistry 2012;134(2):980–5.

Office of Environmental Health Hazard Assessment. Public health goals for chemicals in drinking water: bro-mate. Sacramento, CA: California Environmental Pro-tection Agency; 2009.

US Environmental Protection Agency. National Primary Drinking Water Regulations: Stage 2. Disinfectants and disinfection byproducts rule; final rule. Federal Register 2006;71(2):388–493.

Commission of the European Communities. European Parliament and Council. Commission Directive 2003/40/EC establishing the list, concentration limits and labeling requirement for the constituents of natural mineral waters and condition for using ozone-enriched air for the treat-ment of natural mineral waters and spring waters. Official Journal of the European Union 2003;126:34-9.

ทิพวรรณ นิ่งน้อย, กัญญํา พุกสุ่น, กรรณิกํา จิตติยศรา. การประเมินควํามเสี่ยงต่อสุขภําพจํากโบรเมตในน้ำดื่มบรรจุขวดและน้ำแร่ธรรมชาติ. วํารสํารกรมวิทยําศําสตร์กํารแพทย์ 2556;55(3):161-75.

สำนักงํานมําตรฐํานสินค้ําเกษตรและอําหํารแห่งชําติ. ข้อมูลกํารบริโภคอาหารของประเทศไทย [อินเทอร์เน็ต]. 2559. [สืบค้นเมื่อ 2 ส.ค. 2562]. แหล่งข้อมูล: http://resource.thaihealth.or.th/system/files/documents/1_451.pdf

DeAngelo AB, George MH, Kilburn SR, Moore TM and Wolf DC. Carcinogenicity of potassium bromate admin-istered in the drinking water to male B6C3F1 mice and F344/N rats. Toxicologic pathology 1998;26(5): 587-94.

Al-Mutaz IS. Water desalination in the Arabian Gulf region. In: Goosen MFA, Shayya WH, editors. Water management, purification and conservation in arid cli-mates. Vol. 2. Water purification. Basel: Technomic Publishing; 2000. p. 245–65.

วิกิพีเดีย สํารํานุกรมเสรี. จังหวัดปทุมธํานี [อินเทอร์เน็ต]. 2562. [สืบค้นเมื่อวันที่ 21 ก.ค. 2562]. แหล่งข้อมูล: https://th.wikipedia.org/wiki/จังหวัดปทุมธํานี

Hiroshi W. Revision of drinking water quality standards and QA/QC for drinking water quality analysis in Japan. Technical note of National Institute for Land and Infra-structure Management 2005;264:74-88.

NEA. (2019). Environmental Public Health Act (Chap-ter 95). Environmental public health (water suitable for drinking) regulations [Internet]. 2019. [cited 2019 Aug 30]. Available from: https://www.nea.gov.sg/docs/default-source/default-document-library/eph-wa-ter-suitab le-for-drinking-regulations-2019.pdf

Richardson SD, Thruston AD, Rav-Acha C, Groisman L, Popilevsky I, Juraev O, et al. Tribromopyrrole, bro-minated acids, and other disinfection byproducts produced by disinfection of drinking water rich in bromide. Envi-ronmental Science & Technology 2003; 37(17): 3782-93.

Berry M, Dombrowski K, Richardson C, Chang R, Bor-ders E and Vosteen B. Mercury control evaluation of calcium bromide injection into a PRB-fired furnace with an SCR. Proceedings of the Air Quality VI Conference; 2007 September 24-27; Washington DC; 2007. p. 1-9.

Gordon G, Emmert GL, Bubnis B. Bromate ion formation in water when chlorine dioxide is photolyzed in the presence of bromide ion. Proceedings of the American Water Works Association Water Quality Technology Conference, November 1995, New Orleans. Denver, Colorado: American Water Works Association; 1995.

Liu C, Von Gunten U, Croué JP. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: catalytic disproportionation of hypobromous acid. Environ Sci technol 2012; 46(20):11054-61.

Liu C, Von Gunten U, and Croué JP. Chlorination of bromide-containing waters: Enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems. Water Research 2013;47(14):5307-15.

Van der Hoek JP, Rijnbende DO, Lokin CJA, Bonne PAC, Loonen MT, Hofman JAMH. Electrodialysis as analternative for reverse osmosis in an integrated membrane system. Desalination 1998;117(1-3):159-72.

Watson K, Farré MJ, Knight N. Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation: a critical review. Journal of Environmental Management 2012;110:276-98.

Chen R, Yang Q, Zhong Y, Li X, Li XM, Du WX, et al. Sorption of trace levels of bromate by macroporous strong base anion exchange resin: influencing factors, equilibrium isotherms and thermodynamic studies. Desalination 2014;344:306–12.

Legube B. A survey of bromate ion in European drinking water. Ozone Science and Engineering 1996; 18(4):325–48.

Published

2020-08-28

How to Cite

จิตติยศรา ก., สิงศาลาแสง ส., พรหมหิรัญกุล ป., แร่กาสินธุ์ น., สาขะจร ส., ชะพลพรรค พ., & เอี่ยมบู่ ส. (2020). Risk Situation of Bromate Contained in Bottled Drinking Water and Natural Mineral Water Distributed in Thailand. Journal of Health Science of Thailand, 29(4), 719–734. Retrieved from https://thaidj.org/index.php/JHS/article/view/9316

Issue

Section

Original Article (นิพนธ์ต้นฉบับ)