Effect of Hemp Particle Size on Cannabidiol (CBD) Extraction Using Supercritical Carbon Dioxide Extraction Technique

Authors

  • Sopit Bushyacharu Pharmacy Department, Chao Phya Abhaibhubejhr Hospital
  • Thanapong Pengpon Pharmacy Department, Chao Phya Abhaibhubejhr Hospital

Keywords:

cannabidiol (CBD), hemp, supercritical carbon dioxide extraction, particle size

Abstract

Background: Chao Phraya Abhaibhubejhr Hospital has been assigned to implement a comprehensive medical cannabis policy, covering cultivation, production, and medical applications since its initiation in 2019. Currently, the hospital is responsible for producing six pharmaceutical products containing cannabis and hemp for use in hospitals under the Ministry of Public Health, particularly a cannabidiol (CBD) cream for patients with psoriasis and inflammatory skin conditions.

Objective: To investigate the effect of hemp flower particle size on extraction yield and on the concentrations of cannabidiol (CBD) and cannabidiolic acid (CBDA) by using supercritical carbon dioxide extraction.

Methods: Hemp flowers were ground into three particle sizes: coarse (0.84–1.00 mm), medium (0.25–0.84 mm), and fine (<0.25 mm). The extraction was performed at a pressure of 32 MPa, a temperature of 60°C, and a carbon dioxide flow rate of 2.5–3 L/min for 120 minutes. The obtained extract was then subjected to decarboxylation at 120°C for 120 minutes before being analyzed for extraction yield and CBD and CBDA concentrations.

Results: The fine particles yielded the highest extraction percentage, averaging 15.74%, followed by the medium-sized particles (12.94%) and the coarse particles (11.71%). These findings were consistent with the total CBD content analysis, where the fine particles exhibited the highest total CBD content (7.46%), which was statistically significant compared to the medium-sized (6.05%) and coarse (5.70%) particles. No significant difference was observed between the medium and coarse particles regarding total CBD content.

Conclusion: Smaller hemp particle sizes result in higher extraction yields and total CBD content compared to larger particles. This finding suggests that reducing the particle size to less than 0.25 mm during the raw material preparation process could improve CBD extraction efficiency, thereby increasing the availability of active compounds for pharmaceutical production.

Author Biographies

Sopit Bushyacharu, Pharmacy Department, Chao Phya Abhaibhubejhr Hospital

B.Sc. in Pharm.

Thanapong Pengpon, Pharmacy Department, Chao Phya Abhaibhubejhr Hospital

B.Sc. in Pharm.

References

Tsiogkas SG, Apostolopoulou K, Papagianni ED, Mavropoulos A, Dardiotis E, Zafiriou E, et al. Cannabidiol mediates in vitro attenuation of proinflammatory cytokine responses in psoriatic disease. Cannabis Cannabinoid Res. 2024;9(1):134-46. doi: 10.1089/can.2023.0237.

Zamansky M, Yariv D, Feinshtein V, Ben-Shabat S, Sintov AC. Cannabidiol-loaded lipid-stabilized nanoparticles alleviate psoriasis severity in mice: a new approach for improved topical drug delivery. J Molecules. 2023;28(19):6907. doi: 10.3390/molecules28196907.

Puaratanaarunkon T, Sittisaksomjai S, Sivapornpan N, Pongcharoen P, Chakkavittumrong P, Ingkaninan K, et al. Topical cannabidiol-based treatment for psoriasis: a dual-centre randomized placebo-controlled study. J Eur Acad Dermatol Venereol. 2022;36(9):e718-20. doi: 10.1111/jdv.18215.

Fischedick JT, Hazekamp A, Erkelens T, Choi YH, Verpoorte R. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry. 2010;71(17-18):2058-73. doi: 10.1016/j.phytochem.2010.10.001.

De Prato L, Ansari O, Hardy GEStJ, Howieson J, O’Hara G, Ruthrof KX. The cannabinoid profile and growth of hemp (Cannabis sativa L.) is influenced by tropical daylengths and temperatures, genotype and nitrogen nutrition. Ind Crops Prod. 2022;178:114605. doi: 10.1016/j.indcrop.2022.114605.

Qamar S, Torres YJM, Parekh HS, Robert Falconer J. Extraction of medicinal cannabinoids through supercritical carbon dioxide technologies: a review. J Chromatogr B Analyt Technol Biomed Life Sci. 2021;1167:122581. doi: 10.1016/j.jchromb.2021.122581.

กรองกาญจน์ กิ่งแก้ว. หลักการของการสกัดสีเขียวของผลิตภัณฑ์ธรรมชาติ. วิทยาศาสตร์และเทคโนโลยี [อินเทอร์เน็ต]. 2562 [สืบค้นเมื่อ 10 ก.พ. 2568];34(2):28-29. สืบค้นจาก: https://opac.tistr.or.th/Multimedia/STJN/2019-3402/tistr-stjn_3402-06.pdf

Sagili SUKRU, Addo PW, MacPherson S, Shearer M, Taylor N, Paris M, et al. Effects of particle size, solvent type, and extraction temperature on the extraction of crude cannabis oil, cannabinoids, and terpenes. ACS Food Sci Technol. 2023;3(7):1203-15. doi: 10.1021/acsfoodscitech.3c00129.

Sainz Martinez A, Lanaridi O, Stagel K, Halbwirth H, Schnürch M, Bica-Schröder K. Extraction techniques for bioactive compounds of cannabis. Nat Prod Rep. 2023;40(3):676-717. doi: doi: 10.1039/D2NP00059H.

Da Porto C., Voinovich D., Decorti D., Natolino A. Response surface optimization of hemp seed (Cannabis sativa L.) oil yield and oxidation stability by supercritical carbon dioxide extraction. J Supercrit Fluids. 2012;68:45–51. doi: 10.1016/j.supflu.2012.04.008.

กระทรวงสาธารณสุข. ประกาศกระทรวงสาธารณสุข (ฉบับที่ 425) พ.ศ. 2564 เรื่อง เมล็ดกัญชง น้ำมันจากเมล็ดกัญชง โปรตีนจากเมล็ดกัญชง และผลิตภัณฑ์อาหารที่มีส่วนประกอบของเมล็ดกัญชง น้ำมันจากเมล็ดกัญชง หรือโปรตีนจากเมล็ดกัญชง. [สืบค้นเมื่อ 2 ก.ค. 2562]. ราชกิจจานุเบกษา เล่ม 138 ตอนพิเศษ 49 ง (ลงวันที่ 4 มีนาคม พ.ศ.2564). สืบค้นจาก: https://food.fda.moph.go.th/food-law/announ-moph-425/

Boumghar H, Sarrazin M, Banquy X, Boffito DC, Patience GS, Boumghar Y. Optimization of supercritical carbon dioxide fluid extraction of medicinal cannabis from Quebec. Processes. 2023;11(7):1953. doi: 10.3390/pr11071953.

กรมวิทยาศาสตร์การแพทย์. สำนักยาและวัตถุเสพติด. Thai Herbal Pharmacopoeia 2021 Supplement 2024 [อินเทอร์เน็ต]. นนทบุรี: สำนักยาและวัตถุเสพติด กรมวิทยาศาสตร์การแพทย์ กระทรวงสาธารณสุข; 2567 [สืบค้นเมื่อ 10 ก.พ. 2568]. สืบค้นจาก: https://bdn.go.th/thp/ebook/qQOcBKtlpR9gC3q0GT5gMJq0qT5co3uw [ต้องใช้รหัสผ่าน]

Wilson WB, Abdul-Rahman M. Determination of 11 cannabinoids in hemp plant and oils by liquid chromatography and photodiode array detection. Chromatographia. 2022;85(1):115-25. doi: 10.1007/s10337-021-04114-y.

Mandrioli M, Tura M, Scotti S, Gallina Toschi T. Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L. Molecules. 2019;24(11):2113. doi: 10.3390/molecules24112113.

Sarma ND, Waye A, ElSohly MA, Brown PN, Elzinga S, Johnson HE, et al. Cannabis inflorescence for medical purposes: USP considerations for quality attributes. J Nat Prod. 2020;83(4):1334-51. doi: 10.1021/acs.jnatprod.9b01200.

Souza AAF, Silva AFM, Abreu LR, Silva TF, Greco G, Santos SS, et al. Medicinal uses of Cannabis sp. Res Soc. 2021;10(7):e58010716930. doi: 10.33448/rsd-v10i7.16930.

Sodeifian G, Ardestani NS, Sajadian SA, Ghorbandoost S. Application of supercritical carbon dioxide to extract essential oil from Cleome coluteoides Boiss: Experimental, response surface and grey wolf optimization methodology. J Supercrit Fluids. 2016;114:55-63. doi: 10.1016/j.supflu.2016.04.006.

Published

2025-03-03

How to Cite

1.
บุษยะจารุ โ, เพ็งผล ธ. Effect of Hemp Particle Size on Cannabidiol (CBD) Extraction Using Supercritical Carbon Dioxide Extraction Technique. Thai J Clin Pharm [Internet]. 2025Mar.3 [cited 2025Mar.10];31(1):79-92. Available from: https://thaidj.org/index.php/TJCP/article/view/16237

Issue

Section

Research Articles