Development of Computer-Aided Diagnosis Algorithm of Lung Nodule from Computed Tomography Images
Keywords:
Lung nodule, lung cancer, Computer-Aided Diagnosis, Lung Image Database Consortium, lung segmentation, ก้อนในปอด, มะเร็งปอด, คอมพิวเตอร์ช่วยวินิจฉัย, , ฐานข้อมูลภาพเอกซเรย์ปอด, การแบ่งส่วนภาพปอดAbstract
การพัฒนาอัลกอริทึมคอมพิวเตอร์ช่วยวินิจฉัยก้อนในปอดจากภาพถ่ายเอกซเรย์คอมพิวเตอร์
นันทวัฒน์ อู่ดี
ภาควิชารังสีเทคนิค คณะสหเวชศาสตร์ มหาวิทยาลัยนเรศวร ต.ท่าโพธิ์ อ.เมือง จ.พิษณุโลก 65000
หลักการและวัตถุประสงค์: การตรวจเจอก้อนในปอดในระยะเริ่มต้นสามารถช่วยให้ผลการรักษาโรคมะเร็งปอดดีขึ้น การประมวลผลภาพดิจิทัลจากภาพถ่ายทางรังสีวิทยาสามารถช่วยให้รังสีแพทย์ยืนยันผลตรวจวินิจฉัยก้อนในปอดได้
วิธีการศึกษา: ทำการพัฒนาอัลกอริทึมช่วยวินิจฉัยสำหรับตรวจหาก้อนในปอดที่อาจพัฒนาเป็นมะเร็งจากภาพเอกซเรย์คอมพิวเตอร์ ข้อมูลภาพที่ใช้ในการศึกษาได้จากฐานข้อมูลภาพเอกซเรย์คอมพิวเตอร์ปอดมาตรฐานซึ่งประกอบด้วยภาพเอกซเรย์คอมพิวเตอร์จำนวน 120 ราย ที่มีก้อนในปอดขนาดเส้นผ่าศูนย์กลางใหญ่กว่า 5 มิลลิเมตร การประมวลผลภาพดิจิทัลของอัลกอริทึมคอมพิวเตอร์ช่วยวินิจฉัยประกอบด้วยการแบ่งส่วนภาพ การปรับแต่งภาพ และการแยกคุณลักษณะเฉพาะของก้อนในปอดด้วยวิธีการเปลี่ยนแปลงลักษณะรูปร่างหรือโครงร่างของภาพ
ผลการศึกษา: ผลการวิเคราะห์รูปร่างก้อนในปอดพบว่าเป็นวิธีการที่สำคัญในการตรวจหาก้อนในปอด ระบบคอมพิวเตอร์ช่วยวินิจฉัยที่สร้างขึ้นมีความไว 93% และ false positive rate 3.52
สรุป: ระบบคอมพิวเตอร์ช่วยวินิจฉัยก้อนในปอดที่สร้างขึ้นสามารถช่วยให้แพทย์ได้รับข้อมูลและการตัดสินใจในการวินิจฉัยที่เพิ่มขึ้น
Abstract
Background and Objective: The early pulmonary nodule detection can be helpful for timely therapeutic intervention of lung cancer. The digital image processing of radiography for lung nodule detection is necessary to provide a second opinion to assist radiologists’ image reading.
Methods: We have developed a Computer-aided diagnosis (CAD) algorithm for lung nodule detection in order to detect lung cancer in computed tomography images. Image database, which is obtained from the Lung Image Database Consortium, consists of 120 cases with ³ 5 mm in diameter nodule. The Digital image processing of CAD algorithm consists of modules for lung segmentation, image enhancement of lung nodule and feature extraction with morphological operation.
Results: The shape analysis is a key technique for lung nodule detection. The CAD system achieved a sensitivity of 93% and false positive rate of 3.52.
Conclusions: The CAD system for lung nodule detection can be useful to help physician acquiring diagnostic information and improve clinical decisions.
References
Boyle P, Levin B, Lyon. Worldwide Cancer Burden in World Cancer Report 2008. IARC Sci Publ, 2008: 43-55.
Youlden DR, Cramb SM, Baade PD. The International Epidemiology of Lung Cancer: geographical distribution and secular trends. J Thorac Oncol 2008; 3: 819-31.
Giger ML, Chan H-P, Boone J. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM. Med Phys 2008; 35: 5799-820.
Devesa SS, Bray F, Vizcaino AP, Parkin DM. International lung cancer trends by histologic type: male:female differences diminishing and adenocarcinoma rates rising. Int J Cancer 2005; 17: 294-9.
อาคม ชัยวีระวัฒนะ, เสาวคนธ์ ศุกรโยธิน, อนันต์ กรลักษณ์, ธีรวุฒิ คูหะเปรมะ. แนวทางการตรวจวินิจฉัย และรักษาโรคมะเร็งปอด. กรุงเทพฯ: โรงพิมพ์สำนักงานพระพุทธศาสนาแห่งชาติ, 2548.
Girvin F, Ko JP. Pulmonary Nodules: Detection, Assessment, and CAD. Am J Roentgenol 2008; 191: 1057–69.
Huang ZK, Chau KW. A new image thresholding method based on Gaussian mixture model. Appl Math Comput 2008; 205: 899-907.
Giger ML, Chan HP, Boone J. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM. Med Phys 2008; 35: 5799-820.
Fujita H, Uchiyama Y, Nakagawa T, Fukuoka D, Hatanaka Y, Hara T, et al. Computer-aided diagnosis: The emerging of three CAD systems induced by Japanese health care needs. Comput Methods Programs Biomed 2008; 92: 238-48.
Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol, 2005; 78 (Spec No 1): S3-S19.
Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imaging Graph 2007; 31: 198-211.
Katsuragawa S, Doi K. Computer-aided diagnosis in chest radiography. Comput Med Imaging Graph 2007; 31: 212-23.
Schilham AM, van Ginneken B, Loog M. A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Med Image Anal 2006; 10: 247-58.
Wormanns D, Fiebich M, Saidi M, Diederich S, Heindel W. Automatic detection of pulmonary nodules at spiral CT: clinical application of a computer-aided diagnosis system. Eur J Radiol 2002; 12: 1052-7.
Armato SG 3rd, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans. Med Phys 2011; 38: 915-31.
Beigelman-Aubry C, Raffy P, Yang W, Castellino RA, Grenier PA. Computer-Aided Detection of Solid Lung Nodules on Follow-Up MDCT Screening: Evaluation of Detection, Tracking, and Reading Time. AJR Am J Roentgenol 2007; 189: 948–55.
Li Q, Li F, Doi K. Computerized detection of lung nodules in thin-section CT images by use of selective enhancement filters and an automated rule-based classifier. Acad Radiol 2008; 15: 165-75.