ระบบคอมพิวเตอร์และความรู้พื้นฐานสำหรับการเรียนรู้ของปัญญาประดิษฐ์

ผู้แต่ง

  • ภากร ยอดพรม สาขารังสีวินิจฉัย ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล
  • ไพรัช สายวิรุณพร สาขารังสีวินิจฉัย ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล
  • อำไพ อุไรเวโรจนากร สาขารังสีวินิจฉัย ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล
  • ฑิตพงษ์ ส่งแสง สาขารังสีวินิจฉัย ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล
  • ทนงชัย สิริอภิสิทธิ์ สาขารังสีวินิจฉัย ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล
  • ตรงธรรม ทองดี สาขารังสีวินิจฉัย ภาควิชารังสีวิทยา คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล

บทคัดย่อ

ปัญญาประดิษฐ์ (artificial intelligence หรือ AI) เป็นศาสตร์ทางคอมพิวเตอร์แบบหนึ่งทีต้องการให้คอมพิวเตอร์มีความคิดหรือความสามารถในการแก้ปัญหาได้เหมือนมนุษย์ โปรแกรม AI โดยเฉพาะแบบ deep learning (DL) นั้นอาศัยการเรียนรู้จากข้อมูลจำนวนมากเพื่อหาความสัมพันธ์ที่ดีที่สุดสำหรับการคาดการณ์ผลลัพธ์ที่ต้องการ โดย โปรแกรม DL นี้สามารถหาความสัมพันธ์ระหว่างข้อมูลที่ให้และผลลัพธ์ที่รู้ออกมาได้ด้วยตัวเอง การเรียนรู้นี้อาจใช้ เวลาเป็นวันๆ แต่หลังจากเรียนรู้แล้วสามารถนำไปใช้โดยสามารถให้คำตอบได้ในเวลาเป็นวินาทีเท่านั้น จึงทำให้มี ความเหมาะสมในการใช้งานมาก ในขั้นตอนการเรียนรู้ของโปรแกรม DL นั้นจำเป็นต้องมีการปรับแก้ตัวแปรพร้อมๆ กันเป็นจำนวนมาก หลายครั้งกว่าการเรียนรู้จะเสร็จสิ้นลง ทำให้จำเป็นต้องใช้คอมพิวเตอร์ที่เป็นแบบ massively parallel computer สำหรับขั้นตอนการเรียนรู้นี้ ดังนั้นการเรียนรู้โดยใช้ graphics processing unit (GPU) ที่มีจำนวน หน่วยย่อย (cores) เป็นจำนวนมากจึงมีประสิทธิภาพมากกว่าแบบที่ใช้ central processing unit (CPU) สำหรับ ระบบคอมพิวเตอร์ที่ใช้ในการเรียนรู้ของโปรแกรม DL นั้นจะเป็นแบบเช่าใช้จากระบบคอมพิวเตอร์คลาวด์ หรือ แบบติดตั้งเพื่อใช้เองก็ได้ แต่สำหรับการเรียนรู้สำหรับภาพทางการแพทย์ที่มีข้อมูลจำนวนมาก และข้อมูลของผู้ป่วย เหล่านี้ไม่ควรเปิดเผยต่อสาธารณะนั้น จากประสบการณ์ของเราพบว่าการซื้อและติดตั้งระบบไว้ใช้เองมีความคุ้มค่า กว่าการเช่าใช้จากระบบคอมพิวเตอร์คลาวด์

Downloads

Download data is not yet available.

เอกสารอ้างอิง

McCarthy J, Minsky ML, Rochester N, Shannon CE. A proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine 2006;27(4):12.

Li J, Cheng H, Guo H, Qiu S. Survey on artificial intelligence for vehicles. Automotive Innovation 2018; 1(1):2-14.

Kortli Y, Jridi M, Al Falou A, Atri M. Face recognition systems: a survey. Sensors 2020;20(2):342.

Hassabis D. Artificial intelligence: chess match of the century. Nature 2017;544(7651):413-4.

Chouard T. The Go Files: AI computer wins first match against master Go player. Nature [Internet]. 2016 [cited 2022 Nov 13]. Available from: https://doi.org/ 10.1038/nature.2016.19544

Brown N, Sandholm T. Superhuman AI for multiplayer poker. Science 2019;365(6456):885-90.

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436-44.

Suganyadevi S, Seethalakshmi V, Balasamy K. A review on deep learning in medical image analysis. International Journal of Multimedia Information Retrieval 2022;11(1):19-38.

Dechter R. Learning while searching in constraint-satisfaction-problems 1986. Proceeding of the Fifth National Conference on Artificial Intelligence (AAAI-86); 1986 Aug 11–15; Philadelphia, Pennsylvania. Palo Alto, CA: Association for the Advancement of Artificial Intelligence; 1986. p. 178-85.

Neogy TK, Paruchuri H. Machine Learning as a new search engine interface: an overview. Engineering International 2014;2(2):103-12.

Dada EG, Bassi JS, Chiroma H, Adetunmbi AO, Ajibuwa OE. Machine learning for email spam filtering: review, approaches and open research problems. Heliyon 2019;5(6):e01802.

Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology 2019;290(3):590-606.

Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, et al. A state-of-the-art survey on deep learning theory and architectures. Electronics 2019; 8(3):292.

Capra M, Bussolino B, Marchisio A, Shafique M, Masera G, Martina M. An updated survey of efficient hardware architectures for accelerating deep convolutional neural networks. Future Internet 2020;12(7):113.

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60-88.

Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol 2017;10(3):257-73.

Ueda D, Shimazaki A, Miki Y. Technical and clinical overview of deep learning in radiology. Jpn J Radiol 2019;37(1):15-33.

Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016; 316(22):2402-10.

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639):115-8.

Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, et al. Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2019; 2(3):e191095.

Lakhani P, Sundaram B. Deep Learning at Chest Radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 2017;284(2):574-82.

Karthik R, Menaka R, Johnson A, Anand S. Neuroimaging and deep learning for brain stroke detection-A review of recent advancements and future prospects. Computer Methods and Programs in Biomedicine 2020;197:105728.

Kaka H, Zhang E, Khan N. Artificial intelligence and deep learning in neuroradiology: exploring the new frontier. Canadian Association of Radiologists Journal 2021; 72(1):35-44.

Lee EJ, Kim YH, Kim N, Kang DW. Deep into the brain: artificial intelligence in stroke imaging. Journal of Stroke 2017;19(3):277.

Dubey SR, Singh SK, Chaudhuri BB. A comprehensive survey and performance analysis of activation functions in deep learning [Internet]. [cited 2022 Nov 13]. Available from: https://arxiv.org/pdf/2109.14545v1.pdf#page=1

Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. Neural Information Processing Systems 2012;25:1-9.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv 2014; 1409.1556.

He K, Zhang X, Ren S, Sun J, editors. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27-30; Las Vegas, NV. arXiv 2015; 1512.03385:770-8.

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ, editors. Densely connected convolutional networks. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21-26; Honolulu, HI. arXiv 2017;243:2261-9.

Shoeybi M, Patwary M, Puri R, LeGresley P, Casper J, Catanzaro B. Megatron-lm: training multi-billion parameter language models using model parallelism. arXiv preprint arXiv 2019;190908053.

Ghimire D, Kil D, Kim Sh. A Survey on efficient convolutional neural networks and hardware acceleration. Electronics 2022;11(6):945.

Sze V, Chen YH, Yang TJ, Emer JS. Efficient processing of deep neural networks: a tutorial and survey. Proceedings of the IEEE 2017;105(12):2295-329.

Naffziger S, Beck N, Burd T, Lepak K, Loh GH, Subramony M, et al. Pioneering chiplet technology and design for the AMD EPYC and Ryzen processor families. Proceedings of the 48th Annual International Symposium on Computer Architecture: IEEE Press; 2021. p. 57–70.

Choquette J, Gandhi W, Giroux O, Stam N, Krashinsky R. NVIDIA A100 Tensor Core GPU: performance and Innovation. IEEE Micro 2021;41(2):29-35.

Špeťko M, Vysocky O, Jansík B, Říha L. DGX-A100 Face to face DGX-2—performance, power and thermal behavior evaluation. Energies 2021;14:376.

Taleb N, Mohamed E. Cloud computing trends: a literature review. Academic Journal of Interdisciplinary Studies 2020;9:91.

El-Gazzar R. A literature review on cloud computing adoption issues in enterprises [Internet]. [cited 2022 Nov 13]. Available from: https://hal.inria.fr/hal-01381189/ document

Google. Cloud GPUs 2022 [Internet]. [updated 2022; cited 2022 Nov 13]. Available from: https://cloud. google.com/gpu

Miki Y. Gravitational octree code performance evaluation on Volta GPU. Proceedings of the 48th International Conference on Parallel Processing; 2019 Aug; Kyoto, Japan: Association for Computing Machinery; 2019. p. 1-10.

ดาวน์โหลด

เผยแพร่แล้ว

2022-12-18

วิธีการอ้างอิง

ฉบับ

บท

บทความปริทัศน์